

Types of Algorithms

CHAPTER 5: APPROXIMATION ALGORITHMS

1. Introduction

Most interesting everyday optimization problems are extremely challenging from a computational

viewpoint. In fact, quite often, discovering a near-optimal or even an optimal solution to an optimization

problem of large-scale may necessitate computational resources beyond what is essentially available.

There is a significant body of literature discovering the computational properties of various

optimization problems by seeing how the computational strains of a solution technique grow with the

extent of the problem case to be solved (Aho et al., 1976; 1979; Alon & Spencer, 2000). A key

distinction is made amongst problems that need computational resources that develop polynomially

with problem extent versus those for which the necessary resources grow exponentially. The former

class of problems is termed efficiently solvable, however, problems in the latter class are deemed

intractable since the exponential growth in necessary computational resources reduces all but the

smallest cases of such problems unsolvable (Cook & Rohe, 1999; Chazelle et al., 2001; Carlson et al.,

200).

It has been concluded that a large number of common optimization problems are categorized as NP-

hard. It is widely assumed—though not yet verified (Clay Mathematics Institute, 2003)—that NP-hard

problems are obstinate, which reflects that there is not any effective algorithm (i.e. one that measures

polynomially) that is guaranteed to discover an optimal solution for this type of problems. NP-hard

optimization tasks’ instances are the minimum bin packing problem, the minimum traveling salesman

problem, and the minimum graph coloring problem. As a result of the character of NP-hard problems,

an advancement that leads to a better appreciation of the computational properties, structure, and means

of solving one of them, approximately or exactly, also leads to improved algorithms for resolving

hundreds of other diverse but related NP-hard problems. A number of computational problems, in

regions as diverse as computer-aided design and finance, operations research, economics, biology, have

been revealed to be NP-hard. (Aho & Hopcrosft, 1974; Aho et al., 1979; 1991).

A natural query is whether near-optimal (i.e. approximate) solutions can probably be found efficiently

for hard optimization problems like these. Heuristic local search techniques, such as simulated

annealing and tabu search (see Chapters 6 and 7), are usually quite effective at finding approximate

solutions. However, these techniques do not come with rigorous assurances concerning the class of the

absolute solution or the requisite maximum runtime. In this chapter, we will discourse a more

theoretical methodology to this issue involving alleged “approximation algorithms”, which are efficient

algorithms that can be verified to produce solutions of a definite quality. We will also discuss categories

of problems for which no effective approximation algorithms exist, hence leaving an important part for

the quite common heuristic local search methods (Shaw et al., 1998; Dotu et al., 2003).

The design of decent approximation algorithms is an extremely active area of research in which new

methods and techniques are found. It is quite possible that these methods will become of increasing

significance in tackling large everyday optimization problems (Feller, 1971; Hochbaum, 1996; Cormen

et al., 2001).

In the early 1970s and late 1960s, a precise idea of approximation was projected in the context of bin

packing and multiprocessor scheduling (Graham, 1966; Garey et al., 1972; 1976; Johnson, 1974).

Approximation algorithms, in general, have two properties. First, they provide a reasonable solution to

a problem case in polynomial time. In most circumstances, it is not difficult to develop a procedure that

discovers some feasible solution (Kozen, 1992). Though, we are concerned with having some assured

class of the solution that is the second aspect describing approximation algorithms. The class of an

approximation algorithm remains the maximum “distance” between the optimal solutions and its

solutions, assessed over all the possible causes of the problem. Casually, an algorithm approximately

resolves an optimization problem if it continually returns a possible solution whose measure is near to

optimal, for instance within a factor confined by a constant or by a gradually increasing function of the

input size. Assuming constant α, an algorithm A is an α-approximation algorithm for a particular

minimization problem Π if its answer is as a maximum α time the optimum, in view of all the possible

cases of problem Π.

This chapter focuses on NP-hard optimization problems and their design of approximation algorithms.

We will show in what way standard algorithm design methods such as local search and greedy methods

have been used to develop good approximation algorithms. We will also show exactly how a

randomization is a potent tool for scheming approximation algorithms. Randomized algorithms are

fascinating because in general such methods are easier to implement and analyze, and quicker than

deterministic algorithms (Motwani & Raghavan, 1995). A randomized algorithm is basically an

algorithm that performs a few of its choices arbitrarily; it “flips a coin” to choose what to do at some

phases. As a result of its random component, various executions of a randomized algorithm can result

in different runtime and solutions, even when seeing the same case of a problem. We will demonstrate

how one can associate randomization with approximation methods in order to approximate NP-hard

optimization problems efficiently. In this case, the runtime of the approximation algorithm, the

approximation solution, and the approximation ratio may be random variables. Challenged with an

optimization problem, the aim is to generate a randomized approximation algorithm using runtime

provably confined by a polynomial and whose possible solution is near to the optimal solution, in

probability. Note that these guarantees stand for every case of the problem being solved. The only

arbitrariness in the performance warranty of the randomized approximation algorithm derives from the

algorithm itself & not from the instances.

Since we do not see efficient algorithms to discover optimal solutions for NP-hard problems, a crucial

question is whether we can proficiently compute decent approximations that are near to optimal. It

would be very exciting (and practical) if one could see from exponential to polynomial time intricacy

by relaxing the check on optimality, especially if we assure at most a relatively small error (Qi, 1988;

Vangheluwe et al., 2003; Xu, 2005).

Fig. 22. Schematic Illustration of Mechanism for Approximation Algorithms

[Source: http://faculty.ycp.edu/~dbabcock/PastCourses/cs360/lectures/lecture29.html]

Decent approximation algorithms have been suggested for some significant problems in combinatorial

optimization. The so-called APX intricacy class comprises the problems that permit a polynomial-time

approximation algorithm by a performance ratio confined by a constant. For some problems, we can

plan even better approximation algorithms. More precisely we can contemplate a group of

approximation algorithms that permits us to get as near to the optimum as we want, as long as we are

ready to trade quality with time (Reinelt, 1994; Indrani, 2003). This special group of algorithms is

termed an approximation scheme (AS) & the so-called PTAS category is the category of optimization

problems that permit on behalf of a polynomial time approximation scheme that gauges polynomially

in the extent of the input. In some instances, we can devise approximation systems that gauge

polynomially, both in the magnitude of the approximation error and in the size of the input. We refer to

the category of problems that permit this type of fully polynomial time approximation schemes by way

of FPTAS (Faigle et al., 1989; Boyd & Pulleyblank, 1990; Gomes & Shmoys, 2002).

For some NP-hard problems, however, the approximations that have been achieved so far are quite

poor, & in some instances, no one has ever been capable of devising approximation algorithms in the

optimum constant factor (Chen & Epley, 1970; Hochbaum & Shmoys, 1987). Initially, it was not

obvious if these weak outcomes were due to our deficiency of ability in devising decent approximation

algorithms for this type problems or to some intrinsic structural characteristic of the problems that

disregards them from having decent approximations. We will see that actually there are restrictions to

an approximation which are inherent to some categories of problems (Graham, 1969; Graham & Pollak,

1971; McCrary et al., 2000). For example, in some instances, there is a poorer bound on the

approximation constant factor, and in other instances, we can probably demonstrate that there are not

any approximations within some constant factor of the optimum. Essentially, there is an extensive range

of scenarios starting from NP-hard optimization problems that permit approximations to any essential

degree, to problems not permitting approximations at all. We will deliver a brief overview of proof

techniques used to develop non-approximability results (Ryser, 1951; Andersen & Hilton, 1983;

Pulleyblank, 1989).

Fig. 23. Approximation route for an approximation algorithm problem

[Source: http://fliphtml5.com/czsc/chmn/basic]

We believe that the finest way to understand the notions behind randomization and approximation is to

study cases of algorithms with these characteristics, through examples. Thus in each segment, we will

first present the intuitive concept, then highlight its salient points through well-selected instances of

prototypical problems (Banderier et al., 2003; Podsakoff et al., 2009; Bennett et al., 2015). Our aim is

far from trying to deliver a comprehensive analysis of approximation algorithms or the ideal

approximation algorithms for the introduced problems. Instead, we describe the various design and

evaluation methods for randomized and approximation algorithms, using obvious examples that allow

for comparatively simple and intuitive descriptions. For some problems discoursed in the chapter, there

are approximations with enhanced performance guarantees but needing more sophisticated proof

methods that are beyond the range of this introductory tutorial. In such instances, we will guide the

reader to the related literature results (Spyke, 1998; Diening et al., 2004; Becchetti et al., 2006).

2. Approximation Strategies

2.1.Optimization Problems

We will describe optimization problems in an orthodox way (Aho et al., 1979; 1981; Ausiello et al.,

1999). There are three defining features of each optimization problem: the criterion of a possible

solution to the problem, the configuration of the input instance, & the measure function used to decide

which possible solutions are deliberated to be optimal. It will be obvious from the problem title whether

we desire a possible solution with a maximum or minimum measure. To explain, the minimum vertex

cover problem can be defined in the following manner (Colbourn, 1984; Ansótegui et al., 2004; Leahu

& Gomes, 2004).

Minimum Vertex Cover case is illustrated below:

Case: An undirected graph G = (V,E).

Solution: A subset S ⊆ V so that for every {u,v} ∈ E, either u ∈ S or v ∈ S.

Measure: |S|.

We use the following scheme for items related to a case I.

i. Sol(I) is the set of possible solutions to I;

ii. mI: Sol(I) → R is the measure function concomitant with I;

iii. Opt(I) ⊆ Sol(I) is the possible solutions with optimal measure (either maximum or minimum).

Hence, we may completely stipulate an optimization problem Π by providing a group of tuples {(I,

Sol(I), mI, Opt(I))} over all possible cases I. It is important to remember that Sol(I) and I can be over

entirely different domains. In the above case, the group of I is all pointless graphs, while Sol(I) is all

possible subdivisions of vertices in a graph (Chazelle, 2000; Chazelle & Lvov, 2001; Vershynin, 2009).

2.2.Approximation and Performance

Crudely speaking, an algorithm approximately resolves an optimization problem if it returns a possible

solution at all times whose measure is near to optimal. This intuition is made accurate below. Consider

Π an optimization problem. We assume that an algorithm (A) feasibly solves Π if specified a case I ∈

Π, A(I) ∈ Sol(I); i. e, A returns a possible solution to me.

Let A feasibly resolve Π. Then we describe the approximation ratio α (A) of A to be the lowest possible

ratio concerning the measure of A (I) & the extent of an optimal solution. Formally,

This ratio is each time at least 1 for minimization problems. For maximization problems, it is always at

extreme 1, respectively.

2.3.Complexity Background

An optimization problem having measure 0–1 valued is defined as a decision problem. That is, solving

a case I of a decision problem relates to answering a yes/no query about I (where yes relates to a measure

of 1, & no relates to a measure of 0). We may, therefore, denote a decision problem as a subgroup S of

the group of all possible cases: members of S denote instances with measure 1.

Casually, P (polynomial time) is regarded as the category of decision problems Π that have a consistent

algorithm AΠ such that each instance I ∈ Π is resolved by AΠ in a polynomial (|I|k for some constant k)

a total number of steps on any “rational” model of computation. Rational models include single-tape &

multi-tape Turing machines, pointer machines, random access machines etc (Lovász, 1975; Gurevich,

1990; Belanger & Wang, 1993).

While P is meant to signify a category of problems that can be proficiently solved, NP (non-

deterministic polynomial time) is a category of decision problems Π, which can be efficiently checked.

More correctly, NP is the category of decision problems Π that have a consistent decision problem Π0

in P & constant k satisfying:

I ∈ Π if and only if there exists C ∈ {0, 1} |I|k such that (I, C) ∈ Π'

In other words, one can conclude if a case I am in an NP problem that can be proficiently solved if one

is also given a certain short string C that is of length polynomial in me. For instance, deliberate the NP

problem of defining if a graph G having a path P that travels across all nodes exactly one time (this is

called as the Hamiltonian path problem) (Johnson, 1973; Ho, 1982; Blass & Gurevich, 1990). If one is

given G with an explanation of P, it is quite easy to confirm that P is certainly such a path by testing

that:

i. P has all nodes in G

ii. No node seems more than one time in P

iii. Any two contiguous nodes in P have an advantage between them in G

However, it is not identified how to find this kind of path P given merely a graph G, & this is the major

difference between NP and P. Actually, the Hamiltonian path problem does not only exist in NP but is

present in NP-hard also, see the Introduction (Aharoni et al., 1985; Garey & Johnson, 2002).

Notice that although a short proof is always present if I ∈ Π, it must not be the instance that short proofs

are present for instances not in Π. Therefore, while P problems are deliberated to be those that are

efficiently decidable & NP problems are those deliberated to be efficiently verifiable by a short proof

(Nemhauser & Ullmann, 1969; Hopper & Turton, 2001; Chazelle, 2004).

We will also contemplate the optimization counterparts to NP and P, which are NPO and PO,

respectively. Informally, PO is the category of optimization problems that have a polynomial time

algorithm which always yields an optimal solution to every case of the problem, while NPO is the

category of optimization problems in which polynomial time computable is the measure function, and

an algorithm can decide whether or not a probable solution is possible in polynomial time (Chazelle &

Liu, 2001; Röglin & Vöcking, 2007; Röglin & Teng, 2009).

Here, we will focus on approximating solutions to the “toughest” of NPO problems, those problems in

which the consistent decision problem is NP-hard. Amusingly, some NPO problems of this kind can be

approximated very finely, whereas others can barely be approximated at all (Jiménez et al., 2001; Cueto

et al., 2003; Aistleitner, 2011).

3. The Greedy Method

Greedy approximation algorithms are intended with a simple philosophy in attention: repeatedly make

choices that develop one nearer and nearer to a possible solution for the problem. These choices would

be optimal according to a flawed but effortlessly computable heuristic. In particular, this heuristic tends

to be as opportunistic as conceivable in the short run. That is why such algorithms are termed greedy—

a better name could be “short-sighted”. For example, suppose my aim is to find the shortest path from

my home to the theater (Klein & Young, 2010; Ausiello et al., 2012). If I assumed that the walkthrough

Forbes Avenue is almost the same distance as the walkthrough Fifth Avenue, now if I am nearer to

Forbes than Fifth Avenue, it would be sensible to walk towards Forbes & take that route (Wang, 1995;

Khuller, 1998; Toth et al., 2017).

Obviously, the success of this strategy relies upon the correctness of my conviction that the Forbes path

is definitely just as decent as the Fifth path. We will illustrate that for some problems, picking a solution

conferring to an opportunistic, imperfect heuristic reaches a non-trivial approximation algorithm (Karp,

1975; Paz & Moram, 1977; Mossel et al., 2005).

3.1.Greedy Vertex Cover

In the preliminaries, the minimum vertex cover problem was described. Alternatives of the problem

come up in various areas of optimization research. We will define a simple greedy algorithm, which is

a 2-approximation for the problem; i. e, the vertex cover cardinality resumed by our algorithm is no

larger than two times the cardinality of the least cover (Khot, 2002; Khot et al., 2007; Khot & Vishnoni,

2015). The Greedy-VC algorithm is as below.

Firstly, let S be an empty group. Choose a random edge {u,v}. Add u and v to S, & remove u & v from

the graph. Repeat until no edges persist in the graph. Yield S as the vertex cover.

Proof: Firstly, we claim S as resumed by Greedy-VC is definitely a vertex cover. Suppose not; then

there occurs an edge e that was not protected by any vertex in S. Since we only take out vertices from

the graph which are in S, an edge e will remain in the graph once Greedy-VC had concluded, which is

a contradiction (Kaufman, 1974; Liu, 1976; Durand et al., 2005).

Let S∗ is a minimum vertex cover. We will now indicate that S∗ contains no less than |S|/2 vertices. It

will trail that |S∗| ≥ |S|/2, therefore our algorithm takes a |S|/|S∗| ≤ 2 approximation ratio.

Since the edges we picked in Greedy-VC do not share endpoints at all, it follows that:

i. S|/2 is the total number of edges we picked and

ii. S∗ must have picked at least one vertex from every edge we picked.

It follows that |S∗| ≥ |S|/2.

Occasionally when one verifies that an algorithm has a definite approximation ratio, the analysis is

fairly “loose”, and might not reflect the best probable ratio that can be achieved. It reflects that Greedy-

VC is certainly not better than a 2-approximation. Specifically, there is an infinite group of Vertex

Cover cases where Greedy-VC provably picks exactly double the number of vertices required to cover

the graph, specifically in the case of comprehensive bipartite graphs (Book & Siekmann, 1986;

Hermann & Pichler, 2008).

One final remark must be noted on Vertex Cover. Though the above algorithm is actually quite simple,

no superior approximation algorithms are known! Actually, it is widely assumed that minimum vertex

cover cannot be approximated better than 2 − ɛ for some ɛ > 0 unless P = NP (Hermann & Kolaitis,

1994; Khot & Regev, 2003).

Fig. 24. a sketch of a complete bipartite graph with n nodes colored red and n nodes colored blue.

[Source: https://link.springer.com/chapter/10.1007/0-387-28356-0_18]

A graph for which its vertices can be allotted one of two colors is termed as bipartite (say, blue or red),

in such a manner that all edges have different colored endpoints. When applying Greedy-VC on these

cases (for any normal number n), the algorithm will pick all 2n vertices.

3.2.Greedy MAX-SAT

The problem MAX-SAT has been very well-considered; variants of it arise in several areas of discrete

optimization. To introduce it needs a bit of terminology. We will deal exclusively with Boolean

variables (i. e, those which are either false or true), which we will represent by x1, x2, etc. A literal is

explained as either negation of a variable or a variable (e.g. x7, ¬x11 are literals). A clause is explained

as the OR of few literals (e.g. (-x1 ∨x7 ∨¬x11) is a clause). We assume that a Boolean formula exists in

CNF (conjunctive normal form) if it is given as an AND of clauses (e.g. (-x1 ∨x7 ∨-x11)∧(x5 ∨-x2 ∨-x3)

is in CNF). Lastly, the MAX-SAT problem is to discover a consignment to the variables of the Boolean

formula in CNF so that the maximum total of clauses are fixed to true, or are satisfied. Correctly:

MAX-SAT problem case is illustrated below:

Instance: A Boolean formula F in conjunctive normal form CNF.

Solution: An assignment a, that is a function from every variable in F to {true or false}.

Measure: The number of clauses in F which are set to true (being satisfied) while the variables in F are

assigned rendering to a.

What might be a normal greedy strategy for approximately resolving MAXSAT? One approach is to

choose a variable that satisfies several clauses if it is set to a definite value. Instinctively, if a variable

occurs invalid in several clauses, putting the variable to false will gratify several clauses; hence this

approach should approximately resolve the problem well. Let n(li, F) represent the total number of

clauses in F in which the literal li appears.

Greedy-MAXSAT: Choose a literal li having maximum n(li, F) value. Set the analogous variable of li

so that all clauses having li are satisfied, producing a reduced F. Repeat until no variables stay in F.

It is easy to appreciate that Greedy-MAXSAT goes in polynomial time (coarsely quadratic time,

contingent with the computational model picked for analysis). It is also a “decent” approximation for

the MAX-SAT problem.

3.3. Greedy MAX-CUT

Our next example illustrates how local search (specifically, hill-climbing) may be used in designing

approximation algorithms. Hill-climbing is naturally a greedy approach: when one has a possible

solution x, one tends to improve it by picking some feasible y which is “close” to x, but then has a better

measure (higher or lower, depending on maximization or minimization). Repeated attempts at

improvement frequently produce “locally” optimal solutions which have a good measure comparative

to a universally optimal solution (i.e. a member of Opt(I)). We explain local search by proposing an

approximation algorithm meant for the NP-complete MAX-CUT issue which discovers a locally

optimal substantial assignment. It is important to remember that not all local search approaches try to

discover a local optimum—for instance, simulated annealing tries to escape from local optima hoping

to find a global optimum (Ghalil, 1974; Kirkpatrick et al., 1983; Černý, 1985).

MAX-CUT problem case is illustrated below:

Case: An undirected graph G = (V,E).

Solution: A cut of the graph, that is, a pair (S, T) such that S ⊆ V & T = V − S.

Measure: The cut size, that is the number of edges intersecting the cut, i.e. |{{u,v} ∈ E | u ∈ S,v ∈ T}|.

Our local search algorithm constantly improves the current possible solution by altering one vertex’s

position in the cut, till no more improvement can be attained. We will show that the cut size is at least

m/2 at such a local maximum.

Local-Cut: Start with a random cut of V. For each vertex, conclude if taking it to the other part of the

partition upturns the size of the cut. If so, change it. Repeat up until no such movements are probable.

First, note that this algorithm reprises at most m times, as every movement of a vertex upturns the size

of the cut by no less than 1, and a cut can be as a maximum m in size.

Local-Cut is a1/2 approximation algorithm for MAX-CUT as demonstrated below:

Proof. Suppose (S, T) be the cut yielded by the algorithm, & consider a vertex v. After the algorithm

ends, observe that the total number of edges contiguous with v that cross (S, T) is more than the total

number of contiguous edges that do not cross, else v would have been moved. Suppose deg(v) be the

degree of (v). Then our observation suggests that however, deg(v)/2 limits out of v cross the cut yielded

by the algorithm.

Let m∗ be the number of edges intersecting the cut returned. Each edge takes two endpoints, hence the

sum/counts each intersecting edge at most twice, i.e.

However, note when adding up all degrees of vertices, each edge gets counted

precisely twice, once for every endpoint. We conclude that:

The algorithm has the following approximation ratio

It seems that MAX-CUT concedes much-improved approximation ratios than 1/2; an alleged relaxation

of the issue to a semi-certain linear program produces a 0.8786 approximation (Goemans & Williamson,

1995). However, MAX-CUT cannot be approximated randomly as well, like several optimization

problems (1 − ɛ, for all ɛ> 0) except P = NP. That is to state, it is implausible that MAX-CUT exists in

the PTAS complexity class.

3.4.Greedy Knapsack

The knapsack problem & its special cases have been widely studied in operations research. The idea

behind it is typical: you have a knapsack having capacity C, & a group of items 1,..., n. Each item has

a certain cost ci of carrying it, together with a profit pi that you would gain by carrying it. The problem

is then to discover a subset of objects with the cost at most C, devising maximum profit (Edmonds,

1965; Holland, 1992; Halperin, 2002).

Maximum Integer Knapsack case is illustrated below:

Case: A capacity C ∈ N, & a number of objects n ∈ N, with consistent costs & profits ci, pi ∈ N for all

i = 1, ..., n.

Solution: A subset S ⊆ {1, ..., n} so that Pj∈S cj ≤ C.

Measure: The total profit ∑j∈S pj.

Maximum Integer Knapsack, as framed above, is NP-hard. There is also a “fractional” form of this

problem (we name it Maximum Fraction Knapsack), that can be resolved in polynomial time. In this

form, rather than having to choose the entire item, one is permitted to pick fractions of items, similar

to 1/8 of the 1st item, 1/2 of the 2nd item, and so on. The corresponding profit & cost incurred from the

objects will be also fractional (1/8 of the profit & cost of the 1st, 1/2 of the profit & cost of the 2nd, &

so on) (Ibarra & Kim, 1975; Miller, 1976; Geman & Geman, 1987).

One greedy strategy for resolving these two problems is to box items with the biggest profit-to-cost

ratio first, hoping to get several small-cost high-profit objects in the knapsack. It turns out that such

algorithm will not provide any constant approximation guarantee, rather a tiny variant on this strategy

will provide a 2-approximation for Integer Knapsack, & a precise algorithm for Fraction Knapsack

(Adleman, 1980; Guibas et al., 1983; Lenstra et al., 1990). The algorithms for Integer Knapsack &

Fraction Knapsack are, respectively:

i. Greedy-IKS: Pick items with the biggest profit-to-cost ratio first, till the total cost of items

picked is greater than C. Let j be the last object is chosen, & S be the group of items picked

before j. Return either {j} or S, contingent with which one is more beneficial.

ii. Greedy-FKS: Pick items as in Greedy-IKS. When the item j marks the cost of the existing

solution greater than C, improve the fraction of j so that the resultant cost of the solution is

precisely C.

We omit a proof of the succeeding. A full treatment can be seen in Ausiello et al. (1999). Greedy-KS is

a 12-approximation for Maximum Integer Knapsack as illustrated below:

Proof. Fix a case of the problem. Suppose P = ∑i∈S pi is the total profit of objects in S, & j be the last

item picked (as specified in the algorithm). We will demonstrate that P +pj is equal to or greater than

the profit of the optimal Integer Knapsack solution. It trails that one of the S or {j} has no less than half

the yield (profit) of the optimal solution (Alkalai & Geer, 1996; LaForge & Turner, 2006; LaForge et

al., 2006).

Suppose SI∗
 is an optimal Integer Knapsack solution of the given case, with total profit PI∗. Similarly,

let SF∗
 & PF∗

 relate to the optimal Fraction Knapsack solution. Note that PF∗
 ≤ PI∗. By the exploration of

the algorithm aimed at Fraction Knapsack, P pj, in which ∈ (0,1] is the fraction picked for

object j in the algorithm. Therefore

P + pj ≥ P + pj PI∗

Actually, this algorithm can be drawn-out to acquire a PTAS (polynomial time approximation scheme)

for Maximum Integer Knapsack, (observe Ausiello et al., 1999). A PTAS has the characteristic that, for

any stable ∈ > 0 provided, it yields a (1 + ∈)-approximate solution. Added, in the input size, the runtime

is polynomial, provided that is constant. This allows us to identify a runtime that possesses 1/ in the

exponent. It is typical to observe a PTAS as a group of successively better (then also slower)

approximation algorithms, individually running with a consecutively smaller ∈ > 0. This is instinctively

why they are named an approximation strategy, as it is meant to propose that a range of algorithms are

used. A PTAS is quite influential; such a scheme can approximately resolve a problem with ratios

subjectively close to 1. Nevertheless, we will observe that several problems probably do not possess a

PTAS, unless P = NP (Goemans & Williamson, 1995; Jain & Vazirani, 2001; Festa & Resende, 2002).

4. Sequential Algorithms

Sequential algorithms are employed for approximations on problems in which a feasible solution is a

splitting of the case into subsets. A sequential algorithm “sorts” the objects of the case in some manner,

and chooses partitions for the case based on this ordering (Wallace et al., 2004; Zhu & Wilhelm, 2006;

Wang, 2008).

4.1.Sequential Bin Packing

We first consider the issue of Minimum Bin Packing that is similar in regard to the knapsack problems.

Minimum Bin Packing case is illustrated below:

Case: A set of objects S = {r1,... ,rn}, where ri ∈ (0,1] for all i = 1,... ,n.

Solution: Splitting of S into bins B1,... ,BM so that ∑rj∈Bi rj ≤ 1 for all i = 1,... ,M. Measure: M.

An evident algorithm for Minimum Bin Packing stays an online strategy. Initially, let j = 1 & have a

bin B1 available. As one runs across the input (r1,r2, etc), go for packing the new object ri into the last

bin employed, Bj. If ri does not suit in Bj, make another bin Bj+1 & put ai in it. This algorithm is “online”

since it works on the input in a stable order, and hence adding new items to the case while the algorithm

is working does not alter the outcome (Herr, 1980; Smith, 1986; Stock & Watson, 2001).

Last-Bin is a 2-approximation to Minimum Bin Packing as illustrated below:

Proof. Suppose R is the sum of all objects, so R = ∑ri∈S ri. Suppose m is the total number of bins

employed by the algorithm, & let m∗ be the lowest number of bins conceivable for the given case.

Observe that m∗ ≥ R, since the total number of bins required is at least the total mass of all items (each

bin embraces 1 unit). Now, given any couple of bins, Bi and Bi+1 yielded by the algorithm, the totality

of items from ‘S’ in Bi & Bi+1 is at least 1; or else, we would have kept the items of Bi+1 in Bi in its place.

This indicates that m ≤ 2R. Therefore m ≤ 2R ≤ 2m∗, & the algorithm is a 2-approximation (Price, 1973;

Maurer, 1985; Berry & Howls, 2012).

An interesting workout for the reader is to build a series of examples indicating that this approximation

bound, similar to the one for Greedy-VC, is constructed. As one might assume, there exist algorithms

that provide better approximations than the above. For instance, we do not even deliberate the previous

bins B1,..., Bj−1 while trying to pack an ai, just the last one is considered (Arora et al., 2001).

Motivated by this thought, consider the following alteration to Last-Bin. Choose each item ai in

declining order of size, putting ai in the first accessible bin out of B1,..., Bj. (So a new bin is simply

created if ai cannot be fitted in any of the former j bins.) Call this novel algorithm First-Bin. An

improved approximation bound can be derived, through an elaborate analysis of cases.

4.2.Sequential Job Scheduling

One of the key issues in scheduling theory is exactly how to allocate jobs to multiple machines such

that all the jobs are accomplished efficiently. Here, we will consider job accomplishment in the shortest

extent of time possible. For the purposes of simplicity and abstraction, we will accept the machines are

identical in dealing out power for each job. Minimum Job Scheduling is illustrated below:

Case: An integer k & a multi-set T = {t1,... ,tn} of times, ti ∈ Q for all i = 1,... ,n (that is, the ti are

fractions).

Solution: An allocation of jobs to machines, that is, a function a from {1,... ,n} to {1,... ,k}.

Measure: The accomplishment time for all machines, supposing they run in parallel: max{∑i:a(i)=j ti | j

∈ {1,... ,k}}.

The algorithm we suggest for Job Scheduling is similarly online: when reading a novel job with time ti,

allocate it to the machine j which currently has the least aggregate of work; i.e., the j with minimum

∑i:a(i)=j ti.

Sequential Jobs is a 2-approximation meant for Minimum Job Scheduling as illustrated below:

Proof. Let j be a machine having maximum completion time, & let i be the catalog of the last job

allocated to j by the algorithm. Let si,j be the amount of all times for jobs preceding i that are allocated

to j. (This may be assumed as the time which job i begins on machine j). The algorithm allocated i to

the machine having the least extent of work, therefore all other machines j' at the moment have larger

∑i:a(i)=j' ti.. Hence, that is, si,j is less 1/k of the overall time of all jobs (remember k is

the total number of machines).

Note , the accomplishment time for an optimal solution, since the sum

relates to the case where each machine takes exactly the equal fraction of time to complete. Hence the

accomplishment time for machine j is

S i,j + ti ≤ m∗ + m∗ = 2m∗

So the maximum accomplishment time is at most double that of an optimal solution. This is not the

finest one can do: Minimum Job Scheduling also possesses a PTAS (Papadimitriou & Steiglitz, 1982;

Vazirani, 1983).

5. Randomization

Randomness is a powerful source for algorithmic design. Upon the supposition that one has access to

impartial coins that may be flipped & their values (heads or tails) taken out, a wide array of novel

mathematics can be employed to support the analysis of an algorithm. It is often the instance that a

simple randomized algorithm would have the same performance guarantees by means of a complicated

deterministic (i.e. non-randomized) technique.

One of the most fascinating discoveries in the zone of algorithm design is that by adding randomness

into a computational process may sometimes lead to a substantial speedup over purely deterministic

techniques. This may be intuitively described by the subsequent set of observations. A randomized

algorithm can be observed as a probability distribution upon a set of deterministic algorithms. The

conduct of a randomized algorithm can fluctuate on a given input, dependent upon the random

selections made by the algorithm; therefore when we contemplate a randomized algorithm, we are

indirectly considering a randomly selected algorithm from a group of algorithms. If a substantial portion

of these deterministic algorithms accomplishes well on the given input, at that point a strategy of

resuming the randomized algorithm after a definite point in runtime will result in a speed-up

(Nemhauser & Wolsey, 1988; Gomes et al., 1998).

Some randomized algorithms are capable of efficiently solving problems for which no effective

deterministic algorithm is known, for example, polynomial identity testing (Motwani & Raghavan,

1995). Randomization is also a vital component in the prevalent simulated annealing method for

resolving optimization problems (Kirkpatrick et al., 1983). At length, the problem of defining if a

specified number is prime (a major problem in new cryptography) was only efficiently resolvable using

randomization (Goldwasser & Kilian, 1986; Rabin, 1980; Solovay & Strassen, 1977). Very lately, a

deterministic algorithm was discovered for primality (Agrawal et al., 2002).

5.1.Random MAX-CUT Solution

We saw earlier a greedy approach for MAXCUT that produces a 2-approximation. Using

randomization, we can provide an extremely small approximation algorithm that partakes the same

performance in approximation, & runs in expected polynomial time. Random-Cut: Select a random cut

(i.e. a random splitting of the vertices into two groups). If there are less than m/2 edges intersecting this

cut, repeat. Random-Cut remains a ½ approximation algorithm for MAX-CUT which runs in expected

polynomial time as demonstrated below:

Proof. Suppose X is a random variable signifying the number of edges intersecting a cut. For i = 1,...,

m, Xi will be a pointer variable which is 1 if the ith edge intersects the cut, and 0 otherwise. Then

, so by linearity of m probability. .

Now for any edge {u, v}, the probability it intersects a randomly picked cut is 1/2. (Why? We randomly

placed u & v in one of two probable partitions, so u will be in the same partition equally as v with

probability 1/2.) Hence, E[Xi] = 1/2 for all i, so E[X] = m/2.

This only shows that by selecting a random cut, we anticipate getting at least m/2 edges intersecting.

We want a randomized algorithm which always returns a good cut, & its running time is an arbitrary

variable whose expectancy is polynomial. Let us calculate the probability that X ≥ m/2 after a random

cut is chosen. In the worst instance, when X ≥ m/2 all the probability is based on m, and when X < m/2

all the probability is based on m/2−1. This makes the expectancy of X as high as possible, whereas

making the likelihood of gaining an at least-m/2 cut small. Formally,

m/2 = E[X] ≤ (1 − Pr[X ≥ m/2])(m/2 − 1) + Pr[X ≥ m/2]m

Resolving for Pr[X ≥ m/2], it is as a minimum 2/(m+2). It follows that the estimated number of

repetitions in the above algorithm is as a maximum (m+2)/2; therefore the algorithm shots in expected

polynomial time, & always yields a cut of size no less than m/2.

We remark that, had we basically specified our approximation by way of “pick a random cut & stop”,

we would state that the algorithm goes in linear time, & has an estimated approximation ratio of 1/2.

5.2.Random MAX-SAT Solution

Earlier, we studied a greedy method for MAX-SAT which was guaranteed to gratify half of the clauses.

Here we will study MAX-Ak-SAT, the limitation of MAX-SAT to CNF principles with as a minimum

k literal per clause. Our algorithm is similar to the one for MAXCUT: Choose an arbitrary assignment

to the variables. It is easy to indicate, using an analogous analysis to the above notion, that the estimated

approximation ratio of this technique is at least 1− 1/2k. More specifically, if m is the number of clauses

in a formulary, the expected number of clauses gratified by an arbitrary assignment is m − m/2k.

Let c be a random clause having k literals. The probability that every one of its literals was fixed to a

value that marks them false is as a maximum 1/2k since there is a possibility of 1/2 for each literal &

there are as a minimum k of them. Thus the probability that c is gratified is at least 1−1/2k. Using a

linearity of probability argument (such as in the MAX-CUT analysis) we conclude that as a minimum

m − m/2k clauses are estimated to be satisfied.

6. A Tour of Approximation Classes

We will now take a stride back from our algorithmic debates, and concisely define a few of the common

intricacy classes linked with NP optimization problems.

6.1. PTAS and FPTAS

PTAS and FPTAS are categories of optimization problems that few believe are nearer to the proper

description of what is efficiently solvable, instead of merely P. This is for the reason that problems in

these two classes can be approximated with constant ratios subjectively close to 1. However, with PTAS,

while the approximation ratio gets nearer to 1, the runtime of the analogous approximation algorithm

may increase exponentially with the ratio.

More formally, PTAS is the category of NPO problems Π which have an approximation scheme. That

is, assumed ɛ > 0, there is a polynomial time algorithm A so that

i. If Π is a maximization issue, A is a(1 + ɛ) approximation, that is, the ratio reaches 1 from the

right.

ii. If Π is a minimization issue, it is a(1 − ɛ) approximation (the ratio reaches 1 from the left).

As we mentioned, one disadvantage of a PTAS is that the algorithm (1 + ɛ) could be exponential in 1/.

The class FPTAS is basically PTAS but with the extra condition that the runtime is polynomial in n &

1/for the approximation algorithm.

6.2.A Few Known Results for PTAS and FPTAS

It is known that few NP-hard optimization problems can’t be approximated subjectively well unless P

= NP. One instance is a problem we observed at earlier, Minimum Bin Packing. This is a rare instance

in which there is a modest proof that unless P = NP, the problem is not approximable.

Minimum Bin Packing is not in PTAS unless P = NP. In fact, there is no 3/2 − ɛ approximation for any

ɛ > 0, unless P = NP:

To prove the outcome, we employ a reduction as of the Set Partition decision problem. Set Partitioning

asks if an assumed set of natural numbers could be split into two sets which have an equal sum.

Set Partition:

Case: A multi-set S = {r1,... ,rn}, in which ri ∈ N for all i =

1,... ,n.

Solution: A splitting of S into sets S1 & S2; i.e. S1 ∪ S2 = S & S1 ∩ S2 = ∅.

Measure: m(S) = 1 if ∑ri∈S1 ri = ∑∑ri∈S2 rj, & m(S) = 0 otherwise.

Proof. Suppose S = {r1,... ,rn} is a Set Partition case. Decrease to Minimum Bin Packing by letting

 (half the sum of elements in S), & considering a bin packing case of items S' =

{r1/C,... ,rn/C}.

If S can be divided into two sets of the identical sum, then the minimum quantity of bins necessary for

the analogous S' is 2. Conversely, if S cannot be divided in this manner, the minimum number of bins

required for S0 is at least 3, since every possible partitioning produces a set with a total greater than C.

Hence, if there existed a poly-time (3/2 −ɛ)-approximation algorithm A, it might be used to resolve Set

Partition:

i. If A (given S & C) yields a solution using as a maximum (3/2− ɛ)2 = 3−2 bins, then there is a

Set Partition for S.

ii. If A yields a solution using as a minimum (3/2 − ɛ)3 = 9/2 − 3 = 4.5 − 3 bins, then there isn’t

any Set Partition for S.

However for any ɛ ∈ (0, 3/2), 3 − 2 < 4.5 − 3

Consequently, this polynomial time algorithm differentiates between that S that may be partitioned &

those that cannot, hence P = NP.

A similar result holds for issues such as MAX-CUT, MAX-SAT, & Minimum Vertex Cover. However,

unlike the outcome for Bin Packing, the evidence for these appear to need the outline of probabilistically

checkable proofs.

6.3.APX

APX is a (presumably) larger category than PTAS; the approximation promises for problems in it are

severely weaker. An NP optimization issue Π is in APX only if there exists a polynomial time algorithm

A & constant c so that A stays a c-approximation to Π.

6.4.A Few Known Results for APX

 It is easy to observe that PTAS ⊆ APX ⊆ NPO. When one sees new intricacy classes & their

inclusions, one of the primary questions to be requested is: How probable is it that these inclusions

might be made into equalities? Unluckily, it is highly unlikely. The following relationship can be

revealed between the three approximation categories we have seen.

We can assume that PTAS = APX⇐⇒ APX =NPO ⇐⇒ P = NP. Thus, if all NP optimization problems

can be approximated inside a constant factor, at that point P = NP. Further, if all problems which have

constant approximations may be subjectively approximated, still P = NP. Another way of putting this

is: if NP problems are difficult to solve, then few of them are difficult to approximate as well. Moreover,

there is a “hierarchy” of successively difficult-to-approximate problems.

One of the directions specified follows from a theorem of the prior section: earlier, we observed a

constant factor approximation for Minimum Bin Packing. However, it does not possess a PTAS unless

P = NP. This shows the course PTAS = APX ⇒ P = NP. One example of a problem which cannot be in

APX until P = NP is the well-identified Minimum Traveling Salesman problem.Minimum Traveling

Salesman is described below:

Case: A set C = {c1,... ,cn} of cities, & a distance function d :

C × C → N.

Solution: A path through the cities, that is, a permutation π : {1,... ,n} → {1,... ,n}.

Measure: The cost of visiting cities relating to the path, i.e.

It is important to observe that when the spaces in the problem instances constantly obey a Euclidean

metric then Minimum Traveling Salesperson possess a PTAS (Arora, 1998). Thus, we can say that it is

the simplification of possible distances in the aforementioned problem that makes it hard to

approximate. This is often the issue with approximability: a small limitation on an inapproximable

problem may suddenly make it a highly approximable one.

7. Brief Introduction to PCPs

In the 1990s, the effort in probabilistically checkable proofs (PCPs) remained the major breakthrough

in demonstrating hardness results, and possibly in theoretical computer science altogether. In essence,

PCPs simply look at a little bit of a proposed proof, by randomness, but manage to arrest all of NP. As

the number of bits checked by them is so small (a constant), while an efficient PCP occurs for a given

problem, it infers the difficulty of approximately solving the similar problem as well, inside some

constant factor.

The notion of a PCP ascended from a series of contemplations on proof-checking via randomness. We

know NP signifies the class of problems which have “short proofs” we can prove effective. As long as

NP is concerned, entirely all of the verification completed is deterministic. When a proof is incorrect

or correct, a polynomial time verifier replies “yes” or “no” with 100% sureness.

However, what ensues when we relax the idea of total correctness to involve probability? Suppose we

allow the proof verifier to toss impartial coins, & have a one-sided error. To be exact, now a randomized

verifier only agrees to a correct proof having probability at least 1/2, yet still rejects any unfitting proof

it reads. (We call it a probabilistically checkable proof system, that is, a PCP.) This slight alteration of

what it means to substantiate a proof leads to an incredible characterization of NP: all of the NP decision

problems may be verified by a PCP from the above type, which only tosses O(log n) coins & only

checks a constant (O(1)) figure of bits of any particular proof! The result involves the production of

highly complex error-correcting codes. We shall not debate it on a formal level now but will cite the

aforementioned in the notation of a theorem.

8. Promising Application Areas for Approximation and Randomized

Algorithms

8.1.Randomized Backtracking and Backdoors

Backtracking is one of the first and most natural methods employed for solving combinatorial problems.

Generally, backtracking deterministically may take exponential time. Recent work has established that

many real-world problems could be solved quite rapidly, once the selections made in backtracking are

randomized. Particularly, problems in practice have a tendency to have minor substructures within

them. These substructures have the tendency that once they are solved appropriately, the entire problem

can be solved. The presence of these so-called “backdoors” (Williams et al., 2003) to problems mark

them very rational to a solution using randomization. Coarsely speaking, search heuristics will mark

the backdoor substructure first in the search, with a substantial probability. Therefore, by repeatedly

resuming the backtracking mechanism after a definite (polynomial) length of time, the total runtime

that backtracking requires discovering a solution is decreased tremendously.

8.2.Approximations to Guide Complete Backtrack Search

A promising method for solving combinatorial problems by complete (exact) methods draws on latest

results on some of the finest approximation algorithms centered on linear programming (LP) relaxations

(Chvatal, 1979; 1983, Dantzig, 2016) & so-called randomized rounding methods, as well as on

outcomes that revealed the extreme inconsistency or “unpredictability” in the complete search

procedures’ runtime, often explained by professed heavy-tailed cost distributions (Gomes et al., 2000).

Gomes and Shmoys (2002) suggest a complete randomized backtrack search technique that tightly

combines constraint satisfaction problem (CSP) propagation methods with randomized LP-based

approximations (Shmoys, 1995). They use as a standard domain a virtuously combinatorial problem,

the quasi-group (or Latin square) completion problem (QCP). Each instance involves an n by n matrix

having n2 cells. A complete quasi-group contains a coloring of each cell using one of n colors such that

there is no repetitive color in any column or row. Given an incomplete coloring of the ‘n’ through n

cells, defining whether there is a valid accomplishment into a full quasi-group in an NP-complete

problem (Colbourn, 1984). The underlying structure of this standard is similar to that originated in a

series of practical applications, such as fiber optics routing, experimental design, and timetabling

problems (Laywine & Mullen, 1998; Kumar et al., 1999).

Gomes and Shmoys compare their outcomes for the hybrid CSP/LP strategy steered through the LP

randomized rounding approximation using a CSP strategy & with ann LP strategy. The results indicate

that the hybrid approach considerably improves over the pure approaches on hard instances. This

proposes that LP randomized rounding approximation gives powerful heuristic regulation to the CSP

search.

8.3.Average Case Complexity and Approximation

While “worst case" complexity partakes a very rich theory, it frequently feels too restrictive to be

pertinent to practice. Maybe NP-hard problems are hard just for some esoteric sets of cases that will

hardly ever ascend. To this end, researchers have suggested theories of “average case" complexity, that

attempt to probabilistically explore problems based on randomly selected instances over distributions;

for an overview to this line of work, cf. (Gurevich, 1991; Nowakowski & Skarbek, 2006). Lately, an

exciting thread of theoretical research has explained the connections between the average-instance

complexity of problems & their approximation hardness (Feige, 2002; Wilkinson, 2003; Beier et al.,

2007). For instance, it is presented that if random 3-SAT is difficult to solve in polynomial time (given

reasonable definitions of “random” & “hard”), then NP-hard optimization problems, for example,

Minimum Bisection is difficult to approximate in the worst instance. Conversely, this implies that better

approximation algorithms for some problems might lead to the average-instance tractability of others.

A natural research query is: does a PTAS suggest average-instance tractability or vice versa? We

suspect that some proclamation of this form might be the instance. In our defense, the latest paper

illustrates that Random Maximum Integer Knapsack is precisely solvable in expected polynomial time

(Beier & Vocking, 2003; 2004; 2006).

9. Tricks of the Trade

One major initial incentive for the learning of approximation algorithms was to deliver a new theoretical

avenue for coping and analyzing with hard problems. Faced with a brand-new fascinating optimization

problem, how could one apply the techniques deliberated here? One possible scheme continues as

follows:

i. First, try to substantiate your problem is NP-hard, otherwise, find proof that it is not! Possibly the

problem admits an exciting exact algorithm, without the requirement for approximation.

ii. Often, a very intuitive and natural idea is the base of an approximation algorithm. How good is a

randomly picked possible solution for the problem? (What is the anticipated value of a random

solution?) What about a greedy strategy? Can you define a region such that local search does

fine?

iii. Seek for a problem (name it Π) that is similar to yours in some sense, & use a present

approximation algorithm for Π to get an approximation for your problem.

iv. Try to ascertain it cannot be approximated finely, by reducing few hard-to-approximate problems

to your problem.

The first, third, & fourth points essentially pivot on one’s resourcefulness: one’s persistence to scour

the literature (& colleagues) for problems related to the one at hand, in addition to one’s ability to see

the relationships & reductions which indicate that a problem is indeed analogous.

This chapter has been mostly concerned with the second point. To answer the queries of that point, it is

critical to proving limits on optimal solutions, regarding feasible solutions that one’s methods obtain.

Regarding minimization (maximization) problems, one will have to prove lower limits (respectively,

upper limits) on some optimal resolution for the problem. Devising lower (or upper) limits can simplify

the proof greatly: one only needs to indicate that an algorithm yields a solution with value as a maximum

c time the lower limits to indicate that the algorithm is a c-approximation.

We have proven upper & lower bounds repeatedly (explicitly or implicitly) in our verifications for

approximation algorithms during this chapter—it may be informative for the reader to analyze each

approximation proof & discover where we have done it. For instance, the greedy vertex cover algorithm

(for choosing a maximal matching) works for the reason that even an optimal vertex cover secures, as

a minimum, one of the vertices in each verge of the matching. The number of edges in a matching is a

lower limit on the total number of nodes in an optimal vertex cover, and hence the total nodes in the

matching (that is twofold the number of edges) are, as a maximum, twofold the number of nodes in an

optimal cover.

