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CHAPTER 1: FUNDAMENTALS OF SEARCH ALGORITHMS 

1. Introduction 

In the last few decades, the field of relation database has emerged as a powerful technological tool for 

manipulation and transfer of data. Recent years have witnessed rapid advances in data science and 

technology which have significantly impacted the ways of data representation (Abiteboul et al., 1995; 

1997; 1999). A new challenge has surfaced in the database technology which limits the efficient 

representation of data via classical tables. Several database applications present the data as trees and 

graphs. On the other hand, there are some applications which require the particular database system to 

manipulate uncertainty and time. Extensive research work is being carried out to combat the challenges 

encountered in the database systems (Adalı & Pigaty, 2003; Shaw et al., 2016).  

Presently, the researchers are exploring the prospects of formulating the models for the “next generation 

database systems”, i.e. the databases capable of representing novel data types along with providing 

novel manipulation abilities while effectively supporting standard search operations. Modeling of the 

data is carried out in the form of graphs and trees in next-generation databases which efficiently deal 

with Web, XML, structured documents and network directories (Altınel & Franklin, 2000; Almohamad 

& Duffuaa, 1993). Additionally, new database systems also utilize graph or tree models for data 

representation for dealing with a range of application areas like image databases, commercial databases 

or molecular databases. Currently, the development of various algorithms for graph and tree graph 

querying is being carried out due to the immense significance of graph and tree database systems 

(Altman, 1968; Amer-Yahia et al., 2001; 2002). Apart from the necessity for querying and searching 

graphs and trees, several applications also need temporal uncertainty linked with database objects, e.g., 

databases for commercial package deliveries, weather databases, and financial databases (Atkinson et 

al., 1990; Andries & Engels, 1994). 

Efficient sorting and searching are considered as the fundamental and broadly encountered challenges 

in the field of computer science. For instance, for a collection of certain objects, the objective of the 

search algorithm is to find and distinguish a particular object from the others. On the other hand, the 

search algorithm can perform the identification analysis of a particular object which is not present in 

the system (Baeza-Yates, 1989; Baeza-Yates et al., 1994).  The database objects often possess some 

key values which form the basis for a particular search. Additionally, there are some data values which 

represent the information intended to be retrieved after an object has been found (Baeza-Yates & 

Gonnet, 1996; Baeza-Yates & Ribeiro-Neto, 1999). For instance, a telephone book contains a collection 

of contacts with different names and telephone numbers. The search algorithm is used to locate a 

particular name or number after incorporation of certain search inputs. It is a common understanding 

that some data is associated with these key values, i.e., name, number, etc. Let’s consider a search case 



 

 

which involves searching for a single key value (e.g., name). The group of objects is usually stored in 

an array or a list. Given the collection of n (number of) objects in a particular array A (i.e., A [1 . . . n]), 

the ith element (i.e., A[i]) typically corresponds to the key value for the ith object present in the collection 

(Barrow & Burstall, 1976; Barbosa et al., 2001; Boag et al., 2002).   

The objects are often sorted by using key values (e.g., a phone book), however, this is not essential in 

all the cases. Different search algorithms may be required depending on the sorting condition of the 

data (i.e., either sorted or not). The inputs for a particular search algorithm include the number of objects 

(i.e., n), an array of objects (i.e., A) and a key value being required (i.e., x). Different types of search 

algorithms are discussed in the following sections (Boncz et al., 1998; Bomze et al., 1999).  

2. Unordered Linear Search  

Let’s assume that any given array is not essentially sorted. This might correspond to unsorted collection 

exams which lack alphabetical sorting. For instance, if a student wants to obtain his/her exam results, 

how could she/he do so? He/she would search through the whole collection of exams sequentially until 

her/his exam is found (Boole, 1916; Bowersox et al., 2002). This search is associated with the unordered 

linear search algorithms. A typical example of an Unordered Linear Search is illustrated below:  

Input: A-objects array; n-the number of objects; x-key value being determined   

Output: return point i, if not, return note “x not found”   

i. Execute the comparison of x with each array (A) element A from the very start.   

ii. If x = ith element in array A. Return point i after termination of the search.   

iii. If not, continue searching for the succeeding element until the array ends.   

iv. If any proper element is not found in the array (A), return note “x not found”.  

It is essential to search the whole collection to determine the existence of a particular object. Let’s 

consider the array illustrated below:   

A 35 17 26 34 8 23 49 9 

i I II III IV V VI VII VIII 

If we need to search for x = 34 in this array (A). We require the comparison of x with (35, 17, 26, 34), 

each element once. The desired number (34) is present in position 4. Hence, we return 4 after execution 

of 4 comparisons.  

If the search for x = 19 is required in this particular array. We require the comparison of x with (35, 17, 

26, 34, 8, 23, 49, 9), each element once. We do not find 19 after searching all the objects in this array. 

Therefore, we return “18 not found”. We have executed a sum of 8 comparisons in this case. Generally, 

it is essential to carry out the determination (search) of x in an array of unordered objects with n 



 

 

elements. Sometimes, it is mandatory to search through the whole array to get the desired answer. It 

implies the execution of n comparisons. An equation representing the number (n) of executed 

comparisons can be formulated as T (n) = n (brin, 1995; Bozkaya & Ozsoyoglu, 1999).  

2. Ordered Linear Search  

Let’s assume that a given array is sorted. Such cases do not necessitate the search to be executed through 

the whole list to locate a particular object or inquire about its existence in the collection of objects. For 

instance, if the sorting of a collection of exam scores is carried out by name, it is not essential to search 

beyond the “J”s to determine whether the exam score for “Jacob” exists in the collection or not. A 

simple amendment of the above algorithm results in the ordered linear search algorithms (Brusoni et 

al., 1995; Console et al., 1995; Buneman et al., 1998). A typical model of the Ordered Linear Search is 

illustrated below:   

Input: B-objects array; n-number of objects; x-key value being determined   

Output: return point i, if not, return note “x not found”   

i. From the start of the array B, carry out the comparison of x with the element B[i] in A to check 

their equality.   

ii. If x = B[i], stop the search and return location i.   

iii. If not, execute the comparison of x with that element once again too if the value of x is greater 

than B[i].   

iv. If x > B[i], continue searching for the next object in array B.   

v. If not (i.e., x < B[i]), stop the search and return a message “x not found”.  

  Let’s consider the following sorted version of the previously used array:   

B 8 9 17 23 26 34 35 49 

i I II III IV V VI VII VIII 

For searching x = 34 in the above-mentioned array, the comparison of x with each element (8, 9, 17, 

23, 26) is carried out twice (i.e., one for "="and another one for ">"). After that, the comparison of x 

with (34) is carried out only once for “=”. Hence, we will find 34 in position 6 which will return position 

6. Total number of comparisons = 2*5 + 1 = 11.  

If x = 19 is searched in this array, the comparison of x with each element (8, 9, 17, 23, 26) is carried out 

twice (i.e., one for “=” and another one for “>”). And in the final comparison (i.e., if x > 25), we get a 

response “NO” which means all the objects after 26 in this array are essentially greater than x. Hence, 

we return the message “x not found”.  A total number of comparisons are 2*4 = 8.  



 

 

Generally, it is essential to carry out the determination (search) of x in an array of ordered objects with 

n elements. Sometimes (when the value of x is greater than all values of the array), it is mandatory to 

search through the whole array to get the desired answer. It implies the execution of n x 2 comparisons 

(i.e., n for “=” and another n for “>”). An equation representing the number (n) of executed comparisons 

can be formulated as T (n) = 2n (Bunke & Allermann, 1983; Bunke, 1999; 2000).  

3. Chunk Search  

In case of an ordered list, there is no need to search through the whole collection sequentially. Let’s 

consider the search for a name in the phone book or locating a particular exam in a sorted collection: 

one might instinctively grab 40 or more pages at once from the phone book or 20 or more exams at 

once from the collection to swiftly determine the 40 page (or 20 exams) chunk (pile) in which the 

desired information lies. A careful search needs to be carried out through this pile (chunk) via an ordered 

linear search algorithm (Bunke & Keller, 1973; Bunke, 1997; Bunke et al., 2002). Let’s assume that c 

is the chunk size utilized for 40 pages or 20 exams. Moreover, we can assume that a considerably 

generalized algorithm is accessible to us for ordered linear search. These assumptions in conjunction 

with the above-mentioned ideas can result in the formulation of the chunk search algorithm (Burns & 

Riseman, 1992). A typical Chunk Search algorithm is illustrated below:   

Input: c-chunk size, an A-ordered array of objects, n-the number of elements, the x-key value being 

determined.   

Output: if found, return position i, if not, return the message “x not found”. Disintegrate array A into 

c-sized chunks.   

i. Perform the comparison of x with the each chunk’s last elements, excluding the last chunk. 

ii. Determine if the value of x is greater than that particular element.   

iii. If yes, continue to check the next chunks   

iv. If no, it means x lies in that particular chunk   

v. Execute Ordered Linear Search algorithm inside the chunk    

Consider the array as described follows:          

B 8 9 17 23 26 34 35 49 

i I II III IV V VI VII VIII 

Let’s select the size of the chunk as 2 and search for x = 34. Initially, we divide this array into four 

chunks of size 2 followed by a one-time comparison of x with the each element’s last chunk (9, 23, 34). 

We perform the comparison to see if the value of x is greater than that particular element. We received 

an answer “NO” when the comparison is run for 34 which implies that x should lie in the third chunk.   



 

 

Finally, the execution of an ordered liner search is carried out in the third chunk followed by the location 

of 33 in position 6.  In this particular scenario, we perform three comparisons to determine the proper 

chunk followed by execution of 3 comparisons inside the chunk (i.e., 2 for 26 and 1 for 34). Six 

comparisons are performed in total. Generally, it is essential to carry out the search of x in an array of 

ordered objects with chunk size c and n elements (Chase, 1987; Chawathe et al., 1997; 1998). In the 

worst case scenario, execution of n/c - 1 comparisons are carried out to determine the proper chunk 

while execution of 2c comparisons is carried out to perform the linear search. An equation representing 

the number (n) of executed comparisons can be formulated as: T(n) = n/c +2c – 1. Typically, we just 

ignore the constant number, because the constant number has no effect when n becomes higher. Finally, 

we get T(n) = n/c +2c (Cai et al., 1992; Chawathe et al., 1996; Caouette et al., 1998).   

4. Binary Search  

Let’s consider the below discussed concept for a search algorithm employing the phone book example. 

Suppose, we choose a page randomly from the middle of a phonebook. If the particular name being 

determined is on this page, we are successful. If the particular name being determined occurs 

alphabetically prior to this page, the processes are repeated on the phonebook’s first half; otherwise, 

the process is repeated on the phonebook’s second half. It may be noted that each iteration involves the 

division of the remaining chunk of the phonebook to be sought into two halves; the algorithm involving 

such strategies is known as binary search (Chiueh, 1994; Christmas et al., 1995; Ciaccia et al., 1997). 

This algorithm may not sound like the most suitable algorithm for searching the phonebook (or an 

ordered list), this is possibly the quickest. This is true for many computer algorithms, i.e., the most 

natural (suitable) algorithm is not essentially the best (Cole & Hariharan, 1997; Clark & DeRose, 1999). 

A typical model for Binary Search algorithm is illustrated below:  

Input: an A-ordered array of objects, n-the number of elements, the x-key value being determined.   

Output: if found, return position i, if not, return the message “x not found”.  

i. Divide the array into two equal halves.   

ii. Perform the comparison of x with the first half’s last element to check the equality of x with 

that particular element.   

iii. If yes, stop search and return the position.   

iv. If no, perform the comparison of x with the first half’s last element once again to see if the 

value of x is greater than that element.   

v. If yes, it means x should lie in the second half. Now, the second half must be treated as a new 

array for performing the Binary Search on it.   

vi. If no, it means x should lie in the first half. Now, the first half must be treated as a new array 

and Binary Search is performed on this array.   

vii. If x is not found, return a message “x not found”.  



 

 

  Again consider the below illustrated array:   

B 8 9 17 23 26 34 35 49 

i I II III IV V VI VII VIII 

If we need to search for x = 26. We will perform the comparison of x with each element (23, 34) twice 

(i.e., one for “=” and another for “>”) followed by comparison with the element (26) once for “=”. 

Finally, we find x in 5th position. Total number of comparison are 2 x 2 + 1 = 5.  In general, the worst 

case scenario gives: T(n) = 2log2n (Cook & Holder, 1993; Cole, et al., 1999)  

5. Searching in Graphs 

Graphs are widely used in several applications to characterize the data because of their general, 

powerful and flexible structure. A graph consists of a set of edges and vertices between the pairs of 

vertices. Typically, the edges are used to represent the relations between different data variables while 

vertices are used to represent the data (i.e. anything which needs a description). Depending on the extent 

of abstraction employed to represent the information (data), a graph offers either a semantic or a 

syntactic illustration of the data (Cordela et al., 1996; 1998; 2001). 

 

Fig.  1.  (a) Formula of a chemical compound. (b) A query consisting of wildcards. Graphs are 

naturally used to describe their structures 

[Source: https://www.semanticscholar.org/paper/Searching-Algorithms-and-Data-Structures-for-

%2C-and-Giugno/4378f3b5d0495f4164c4ac74f01ecef414951974] 

 

Fig.  2. (a)Illustration of an image (b) Demonstration of a Region Adjacent Graph- RAG of the 

image 

[Source: https://www.semanticscholar.org/paper/Searching-Algorithms-and-Data-Structures-for-

%2C-and-Giugno/4378f3b5d0495f4164c4ac74f01ecef414951974] 



 

 

 

 

Fig.  3. Illustration of (a) A structured database tree and (b) A query consisting of wildcards 

[Source: https://www.semanticscholar.org/paper/Searching-Algorithms-and-Data-Structures-for-

%2C-and-Giugno/4378f3b5d0495f4164c4ac74f01ecef414951974] 

Let’s discuss a biochemical (e.g., proteins) database system [97, 18, 146]. Proteins are typically 

characterized using labeled graphs, i.e., the edges represent the linkages between different atoms while 

vertices represent various atoms. The classification of proteins is usually carried out on the basis of 

their common structural features. One of the applications of such categorizations is the estimation of 

the functionality for a new protein fragment (i.e., synthesized or discovered). The deduction of this 

functionality can be carried out by locating the common structural features between known proteins 

and the new fragments. Finally, the wildcards may be present in the queries which exhibit matching 

characteristics with vertex or paths in the data (Corneil & Gotlieb, 1970; Day et al., 1995). 

Visual languages contain graphs which serve as the underlying data models. These languages are 

employed in software engineering and computer science to specify tools and projects for integrated 

environments, in Computer Integrated Manufacturing systems exhibiting process modeling and in 

visual database systems for describing the query language semantics (Bancilhon et al., 1992; Dehaspe 

et al., 1998; Dekhtyar et al., 2001). 

Computer vision graphs are used to represent various kinds of images in different abstraction levels 

(DeWitt et al., 1994; Deutsch et al., 1999). In a representation with the low-level description, the graph 

vertices correspond to edges and pixels to spatial associations between pixels (Djoko et al., 1997; Dinitz 

et al., 1999). In higher description levels, the image represented by a graph (i.e., RAG) is carried out in 

such a way that the image decomposition in regions takes place. In this scenario, the regions signify the 

graph vertices and the edges represent the spatial linkages between different regions (Dutta, 1989; 

Dubiner et al., 1994). 



 

 

The network directories, semi-structured database systems, and Web usually model the data in the form 

of graphs (Dyreson & Snodgrass, 1998; Eiter et al., 2001). Such database systems typically consist of 

directed labeled graphs possessing the vertices with complex objects while the edges are an illustration 

of the linkages between the objects. The large sizes of such database systems necessitate the 

specification of the queries using wildcards. This phenomenon allows for the retrieval of subgraphs 

utilizing a partial information of the whole graph (Eshera & Fu, 1984; Engels et al., 1992; Cesarini et 

al., 2001). 

Apart from data storage in graphs, most of the above-mentioned applications necessitate the use of tools 

for comparing different graphs, recognizing different regions of graphs, retrieving the graphical data 

and classifying the data. In case of the non-structured data (e.g., strings), an efficient response is 

received from the modern search engines for keyword-based queries. This excellent speed is possible 

due to various factors which include caching, inverted (clever) index structures and the use of 

distributed and parallel computing (Ferro et al., 1999; 2001’ Foggia et al., 2001). Similar to the 

mechanism of word matching in keyword searching, the query graphs are matched in keygraph 

searching against the fundamental data graphs. Significant efforts have been carried out to generalize 

keyword searches for keygraph searching (Frakes & Baeza-Yates, 1992; Fortin, 1996). However, such 

generalizations are not so natural, i.e., keyword searching exhibits polynomial complexity on the size 

of the database. On the other hand, keygraph searching exhibits exponential complexity which makes it 

an entirely distinct class of problems. There are different types of problems associated with keygraph 

searching, which are discussed in the following sections (Gadia et al., 1992; Fernandez et al., 1998; 

Fernández & Valiente, 2001). 

5.1.Exact Match or Isomorphisms 

Given a data graph Gb and a query graph Ga, we can determine if these two graphs are identical. 

Isomorphic nature of the graphs Ga and Gb are determined along with the mapping of the Ga vertices 

and Gb vertices while maintaining the conforming edges in Gb and Ga. This issue is recognized to be 

in NP (nondeterministic polynomial time) but it is still unknown whether it lies in NP-complete or P 

(polynomial time) (Garey & Johnson, 1979; Gold & Rangarajan, 1996; Goldman & Widom, 1997). 

5.2.Subgraph Exact Matching or Subgraph Isomorphism 

Given a data graph Gb and a query graph Ga, we say conveniently assume that Ga is a subgraph 

isomorphic to Gb provided that Ga is also isomorphic to the subgraph of Gb. It may be noted that Ga has 

the potential to be subgraph isomorphic for various subgraphs of Gb. This issue is considered to lie in 

NP-complete. Additionally, it is significantly expensive to find all the subgraphs which exhibit 

similarity with the query graph Ga (e.g., exhibiting the maximum occurrences of Ga graph in Gb) rather 

than finding a single occurrence (Gonnet & Tompa, 1987; Grossi, 1991; 1993). 



 

 

5.3. Matching of Subgraph in a Graphs’ Database 

Given a data graphs D and a query graph Ga, we want to discover all the Ga occurrences in each graph 

of D. Although the algorithms with graph to graph matching can be employed, but the use of special 

techniques has proved to be efficient in order to diminish the time complexity and search space in the 

database systems. This problem also corresponds to NP-complete (Hirata & Kato, 1992; Güting, 1994; 

Gupta & Nishimura, 1998). 

A simple listing algorithm to discover the occurrence of the query graph Ga in the data graph Gb involves 

the generation of all potential maps between the vertices of the two graphs followed by checking the 

matching characteristics of the map. The algorithms with such graphs exhibit exponential complexity 

(Hirschberg & Wong, 1976; Kannan, 1980; Goodman & O'Rourke, 1997). 

Many attempts have been made to lessen the combinatorial costs involved in graph searching. The 

research efforts in this field have taken following three directions:  

i. The first effort involves the study of matching algorithms for specific graph structures, e.g., 

planar graphs, associated graphs and bounded valence graphs (Umeyama, S. (1988; Cour et al., 

2007);  

ii. The second effort include the mechanism to figure out tricks for reducing the number (quantity) 

of generated maps (Wilson & Hancock, 1997; Luo & Hancock, 2001) ;  

iii. Finally, the third research effort is to offer approximate algorithms with polynomial 

complexity; however, they do not guarantee a correct solution (Leordeanu & Hebert, 2005; 

Leordeanu et al., 2009). 

Various algorithms have been established for keygraph searching to deal with the cases in which precise 

matches are difficult to find (Milo & Suciu, 1999; Conte et al., 2004). Such algorithms are quite useful 

in applications involving noisy graphs. These algorithms typically utilize a cost function to predict the 

graphs’ similarity and perform the transformation of graphs into one another (McHugh et al., 1997; Al-

Khalifa et al., 2002; Chung et al., 2002). For instance, semantic transformations can be used to define 

a cost function which mainly depends on the specific application domains and permit the vertices’ 

matching with discordant values. Semantic transformations are also dependent on syntactic 

transformations (i.e., branch insertion and deletion) which are responsible for matching structurally 

distinct parts of the graphs. Alternatively, the approximate algorithms are also employed for noisy data 

graphs (Ciaccia et al., 1997; Cooper et al., 2001; Kaushik et al., 2002). 

In case of query graphs present in the database of graphs, most of the contemporary methods are 

intended for specific applications (Gyssens et al., 1989; Salminen & Tompa, 1992). Several querying 

approaches for semi-structured database systems have been proposed by various researchers. Moreover, 

numerous commercial products and academic projects have also been carried out which involve 

subgraph searching in different biochemical database systems (Macleod, 1991; Kilpeläinen & Mannila, 



 

 

1993). These two distinct examples possess different fundamental data models (i.e., initially the 

database is observed as a large graph in case of commercial products while in the database is seen as a 

collection of graphs in case of academic projects). However, the above-mentioned techniques exhibit 

following common approaches:  

i. Regular path expressions ( [193, 46])  

ii. Regular indexing methods  

These techniques are used during query time to trace the substructures in the database in addition to 

avoiding the unnecessary database traversals (Tague et al., 1991; Navarro & Baeza-Yates, 1995). 

In comparison with the application-specific approaches, only a small number of application-

independent techniques are present for querying graph database systems. The query graphs with same 

sizes are typically employed in the database systems, however, there are some techniques which exempt 

the same-size restriction (Dublish, 1990; Burkowski, 1992; Clark et al., 1995). A general idea in the 

above-mentioned algorithms is to develop an index of similarities between the subgraphs and graphs of 

the database followed by their organization in suitable data structures. A method was proposed by 

Bunke (2000), which indexes the labeled database graphs in exponential time scale and computes the 

isomorphism of a subgraph in the polynomial time. Both matching and indexing are based on all 

potential permutations of the neighboring matrices of the graphs. The above algorithm can display 

improved performance if only a set of probable permutation is maintained (Verma & Reyner, 1989; 

Nishimura et al., 2000). Cook and Holder (1993) suggested a different approach (i.e., not based on any 

indexing technique) for searching of a subgraph in a database. They witnessed similar repetitive 

subgraphs present in a single-graph database system after the application of typical graph matching 

algorithms (Luccio & Pagli, 1991; Fukagawa & Akutsu, 2004). 

 


